High Temperature Regulator

The 451 Series of regulators are designed to withstand the rigorous demands of high temperature ambient or process applications up to 285°C. The corrosion and heat resistant design make it ideal for pressure control in petrochemical process systems or high temperature furnace applications.

- Pressure ranges of 0-15 to 0-500 PSI are available to cater for a broad range of applications
- Capsule seat design for greater serviceability and life
- ➤ 316L stainless steel diaphragm

Specifications:

Max. Inlet Pressure: 3,000 PSI (210 BAR)

Gauges: N/A

Body Ports: 1/4" NPT(F)

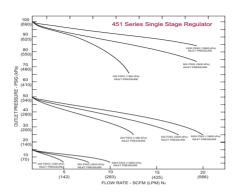
Helium Leak Integrity: 1 x 10⁻⁹ scc/sec

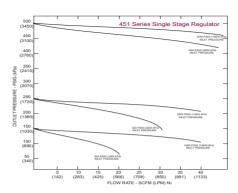
Cv: 0.1 *Weight:* 1.0 kg

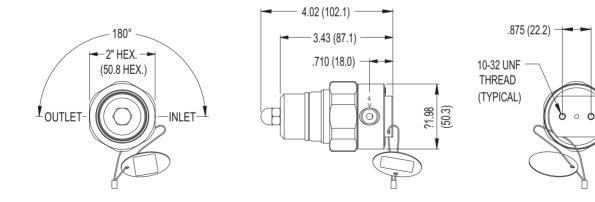
Materials:

Bonnet: 316L stainless steel
Bonnet: 316L stainless steel
Seat: PEEK (not for oxygen)

Filter: 10 micron 316L stainless steel


Internal Seals: PTFE


ORDERING INFORMATION


S453 - XXX - XXX - XXX

Series	Outlet Pressure	Inlet Fitting	Outlet Fitting	Options
S451	15 (0-15 psi)	4F (1/4" NPT Female)	4F (1/4" NPT Female)	02 (Captured Vent)
	50 (0-50 psi)	2S (1/8" Tube)	2S (1/8" Tube)	04 (Wall mount bracket)
	100 (0-100 psi)	4S (1/4" Tube)	4S (1/4" Tube)	
	150 (0-150 psi)	8S (1/2" Tube)	8S (1/2" Tube)	
	250 (0-250 psi)	4M (1/4" NPT Male)	4M (1/4" NPT Male)	
	500 (0-500 psi)	Others refer outlet fitting chart	Others refer outlet fitting chart	

Flow and Basic Dimensions

